
Unforgettable Bitcoin: Recovery through Memorable Secrets

Rarimo protocol, v.0.1

Oleksandr Kurbatov, Lasha Antadze, Yaroslava Chopa

June 15, 2025

Abstract

Secure storage of a private key is a challenge. Seed phrases were introduced in 2013 to enable
wallet owners to remember a secret without storing it electronically or writing it down (ideally). Still,
very few people can remember even 12 random words. This paper proposes a method for establishing
an alternative recovery option that utilizes lower-than-standard entropy secrets (such as passwords,
biometrics, and object extractors) in conjunction with Proof-of-Work. We also provide an economic
rationale for parameters (e.g., PoW difficulty, secret length, locktime, and cost of the attack) that
enable us to achieve the optimal solution from both security and time perspectives.

1 Introduction

Replacing BIP-39 [Bit13] with easier approaches is possible. We have a lot of ”user-friendly” key deriva-
tion and recovery methods that are based on secrets with lower entropy: passwords, short phrases,
biometrics, etc. Of course, these methods aren’t comparable to high-entropy keys from a security per-
spective, so using them in their rough form would be highly insecure. However, we can combine them
with additional cryptographic techniques to achieve a trade-off between user experience and security
level. The goal of this paper is to investigate such techniques.

We will demonstrate how the user can recover access after forgetting parts of the private key, while
maintaining a computational advantage over potential attackers.

1.1 What Can We Break?

Security level is a measure of the complexity of attacking the corresponding cryptographic primitive.
We can express it as the number of attempts the attacker needs to break it. If the number of attempts
consists of 2λ, we have a λ-bit security.

According to FIPS 140-2 [NIS01], the minimum acceptable security strength for cryptographic mod-
ules is 112 bits. At the same time, according to Aumasson [KKM19], we have the ”broken” category
(the primitive can be attacked) with λ ≤ 80 and ”wounded” with 80 < λ ≤ 100 (can be broken soon).
So the minimal acceptable λ should be more than 100 (to make an attack currently impractical), and
more than 112 to satisfy current security standards.

Gaëtan Leurent and Thomas Peyrin performed an interesting example of the attack [LP20]. It took
261.2 operations to carry out for finding a collision of the SHA-1 hash function with the cost of $11.000
(they declared ≈$75.000 but taking into account GPU cost then and preparation cost). So we also want
to include the cost of the attack into our calculations (it makes a lot of sense related to the recovery
solution we analyze).

2 Bitcoins That Can’t Be Lost

Traditionally, Bitcoin relies on the use of 256-bit keys, which provide 128 bits of security (if generated
randomly). That’s fine for the main access method, but it is impossible to recover funds if this key is
lost. With the Taproot [Bit20], we can build a model that reduces the complexity of Bitcoin recovery
over time by combining shorter and shorter keys with alternative spending paths, along with appropriate

1

timelocks (which indicate when alternative secrets can be used). The lower the length of the private key,
the lower the difficulty of the discrete log problem.

Pt = Pi + [hash(Pi||C)]G

sk(ℓ=256)

P1 and TL1

P2 and TL2
. . .

sk(ℓ=192)

sk(ℓ=164)

We understand this approach doesn’t help an initial owner in case the key is lost (because everybody
can start working on the DL problem and find an appropriate key early). Still, at the same time, BTC
from this output can’t be lost forever (and we think discrete log competition in the case the primary key
is lost is fun).

However, we aim to extend the described approach and provide the fund owner with a significant
advantage in solving the discrete log problem based on the set of lower-entropy secrets that can be
derived from passwords, biometrics, objects, location, etc.

3 Recovery Approaches

To provide the initial BTC owner with the ability to find an appropriate secret more quickly than others,
we can rely on additional knowledge with lower entropy. In this case, the key will include:

1. The part derived from the user’s secret

2. The random part needs to be brute-forced

secret rand

key

Figure 1: Composite key

Combining this approach with the unlosable bitcoins concept we described earlier, we give the secret
owner the advantage to brute-force the needed key much faster (depending on the secret length). While
the attacker needs to brute-force the whole key, the owner needs to find the random part (if the initial
knowledge wasn’t lost).

We can employ two principal schemes: constructing the private key directly from the parts (which we
will refer to as a composite key) or passing it through the KDF function. The first approach is much
friendlier because the discrete log problem is easier than brute-forcing KDF’s input. Let si, i ∈ [1, n] be
a secret components with the lengths ℓsi and r a randomness. In this case, the recovery user’s key is
constructed as:

xr =

n∑
i=1

(2256−
∑

j∈[1,i] ℓjsi) + r

Having the public key Pr = [xr]G and secret components, the user can calculate the point R as:

R = Pr − [

n∑
i=1

(2256−
∑

j∈[1,i] ℓjsi)]G

2

Then the user can solve the DL problem for R to receive the r value and reconstruct the recovery key as
described in 3. Let’s note that if the user loses one or several secrets from the si, i ∈ [1, n] set, they still
are able to reconstruct the secret, but with a more difficult DL problem (depends on the secrets’ length)

The second approach is better from a security perspective and more flexible from a time and resource
perspective (different KDFs can be used). The recovery key in this case is constructed as:

xr = KDF(s1||s2||...||sn||r)

To recover the key, in this case, the user needs to brute-force the r value in the [0, 2ℓr − 1] bounds

and compare if [KDF(sni=1||r′)]G
?
= Pr.

4 Recoverable P2TR Address

While the Rarimo team is working on extracting secrets from biometrics and arbitrary objects [Rar24],
we provide an example of how the approach might work, based on a password. In the future, we plan to
extend our work with the aforementioned secret-retrieving approaches.

4.1 Parameters

Let:

• G: generator of the secp256k1 group of prime order q

• Pi = [x]G: internal (primary) public key with secret key x ∈ Zq

• p: user password of length ℓp ∈ [16, 28] over the 94 printable ASCII characters

• E = ℓp · log2 94: raw password entropy (bits)

• m ∈ {0, 1}ℓm : mask, the constant string used for secret padding

• s: salt, a public 128-bit random string (optional, used in KDF).

• c: KDF iteration count

• ℓx: target scalar (recovery secret key) length (bits).

• ℓk: KDF output length (bits)

• r: the nonce value of the length ℓr = lx − lm − E

• T : the absolute timelock height

4.2 Address Generation

4.2.1 Composite Key

1. Construct the recovery key as:

k = 2ℓr+ℓp ·m+ 2ℓr · p+ r

2. Derive points from the private key parts and aggregate them into one resulting public key:

Cm = 2ℓr+ℓp [m]G

Cp = 2ℓr [p]G

Cr = [r]G

C = Cm + Cp + Cr

3. Form the Taproot output key

Pt = Pi + [hash(Pi||altRoot)]G.

where altRoot includes the script <<T OP CHECKLOCKTIMEVERIFY OP DROP C OP CHECKSIG>>, which
activates the recovery key only after timelock T .

3

4.2.2 KDF-based Key

1) Concatenate the mask, password, and nonce into an ℓ-bit string

X = (m||p||r) ∈ {0, 1}ℓx .

2) Derive the recovery scalar value using KDF:

k = KDF
(
X, s, c, ℓk) ∈ {0, 1}ℓk .

3) Compute the tweak point
C = [k]G.

4) Form the Taproot output key

Pt = Pi + [hash(Pi||altRoot)]G.

The altRoot is formed in the same manner as in the previous section.

4.3 Recovery Flow

By default, the user is able to access the output if their primary secret isn’t lost. If x is lost but p
remains, then m and the KDF output k are known, leaving only the nonce r unknown and needs to be
found by the user.

4.3.1 Composite Key

In the case of the composite key, the key reconstruction process is easier. Knowing the m and p, the
user can subtract appropriate points from the recovery public key and resolve the discrete log problem
for the point left:

[r]G = C − 2ℓr+ℓp [m]G− 2ℓr [p]G

Using Pollard’s rho for discrete logarithms requires about N operations, where:

N =
√
2ℓr = 2

ℓr
2

Let C be the cycle count per scalar multiplication and an aGHz core executes a × 109 cycles/s. On an
n-core machine, the aggregate rate is

ν = n× a× 109

C
ops/s.

Hence, the average recovery time is

T =
N

ν
s.

4.3.2 KDF-based Key

If the KDF function was used for the key derivation, the user can’t resolve the discrete log only for
the r-part. They need to brute-force the randomness on the KDF input, trying to derive the secret
corresponding to the public recovery key:

[KDF
(
(m||p||r′), s, c, ℓk)]G

?
= C

It takes, on average, 2ℓr−1 operations; the selection of the KDF function and cycle parameter allows
configuring the required brute-force time and complexity (memory and time resistant approaches).

4

5 Proposed parameters

In this section, we try to fix the parameters of our scheme and calculate the resulting security bounds.
We are targeting 256-bit length keys, with the password serving as the primary secret (we indicate ↓ and
↑ as the minimal and maximum password length the user uses).

Let the password length be n↓ = 16 and n↑ = 30, so

E↓ = n↓ log2 94 ≈ 16× 6.5546 = 104 bits

E↑ = n↑ log2 94 ≈ 30× 6.5546 = 196 bits

5.1 Composite Key

Although the user can select any r length, we limit it to 60-72 bits here (from the perspective of the
recovery time). In this case, we have:

ℓx = 256, ℓr↓ = 72, ℓr↑ = 60

ℓm↓ = ℓx − E↓ − ℓr↓ = 80

ℓm↑ = ℓx − E↑ − ℓr↑ = 0

Hence ℓm↓ = 80 and ℓm↑ = 0 (no mask is needed). The discrete-log search complexity for the key owner
is

NO↓ = 2ℓr/2 = 236 ≈ 6.87× 1010 group operations

NO↑ = 2ℓr/2 = 230 ≈ 1.07× 109 group operations

On four a = 3 GHz cores with C = 547× 103 cycles per scalar multiplication, the rate is

ν = n× a× 109

C
≈ 2.9× 104 ops/s,

And the average recovery time is

T↓ =
N′↓

ν
≈ 2.37× 106 s. ≈ 27 d.

T↑ =
N′↑

ν
≈ 3.69× 104 s. ≈ 0.5 d.

5.1.1 Attack Cost

When neither the password p (entropy E bits) nor the nonce r (ℓr bits) is known, an attacker must
exhaustively search the combined space of size

NA =
√
2E+ℓr = 2

E+ℓr
2 .

with the total time

T =
2

E+ℓr
2 C

n× a× 109
s,

The minimum CPU frequency required to achieve Tyr < 1 (taking into account the assumption that the
recovery key can be activated and should be replaced in 1 year) is

fmin↓ >
2

E+ℓr
2 C

109 × 3.154× 107
GHz ≈ 5.35× 1015 GHz.

fmin↑ > 5.9× 1027 GHz

At an energy cost of 0.71µJ per scalar multiplication (≈ 2.6× 10−14 USD), the electricity cost for N
trials is:

N × 2.6× 10−14 = 2
E+ℓr

2 × 2.6× 10−14 USD.

5

For given parameters ℓr = 72 and E↓ = 104, E↑ = 183

2
E+ℓr

2 = 2
176
2 ≈ 3× 1026 ↓

= 2
255
2 ≈ 8.5× 1038 ↑

Which results in

3× 1026 × 2.6× 10−14 ≈ 7.8× 1012 USD ↓
8.5× 1038 × 2.6× 10−14 ≈ 2.2× 1025 USD ↑

the cost of full brute-force.

5.1.2 Additional Security Considerations

The composite key scheme suffers from several fundamental design flaws that make it less than ideal
from a cryptographic perspective:

1. Structural Rigidity: The key construction method, k = (m << (ℓr+E))+(p << ℓr)+r is rigid. It
requires a precise a priori estimate of the password’s entropy E to determine the ℓm and the bit-shift
values. If a user chooses a password that is stronger or weaker than anticipated, the scheme does
not gracefully adapt. This lack of flexibility compares unfavorably to a KDF-based approach, where
the input can be of variable length and is processed into a fixed-length, pseudorandom output.

2. Side-channel attacks: SPA or timing attack could allow an adversary to observe the user’s recovery
device and make assumptions about the lengths and values of the password and randomness.

3. Structural weakness: the private key k isn’t a random integer. Introducing a clear mathematical
structure could potentially open up unforeseen attack vectors in the future, especially if novel
algebraic attacks on elliptic curves are discovered.

4. Susceptibility to a single, highly structured mathematical problem: the key security in this case is
totally based on the ECDLP problem (including the assumption of working with a key length lower
than 256 bits). Considering the possibility of hardware acceleration, this scheme is significantly
less secure than a KDF-based one.

5.2 KDF-based Key

With the KDF function, we don’t need to have 256-bit input data because we are moving from the ECDL
problem to the task of collision search. So, for receiving λ = 128 we can use the 128-bit input secret.
We propose referring to a specific KDF function to ensure our calculations are objective; for example,
Argon2id [BDK17] is one of the leading KDF functions.

We will target a user recovery time of approximately 30 days on a standard quad-core machine.
To achieve this, we select a nonce length of ℓr = 26 and configure Argon2id with parameters that
impose a significant computational and memory cost per hash evaluation (e.g., memory cost m=256
MiB, iterations t = 3, parallelism par = 4).

The user needs to perform, on average, 2ℓr−1 operations to find the correct nonce. Assuming a quad-
core machine can compute approximately 12 of these Argon2id hashes per second, the average recovery
time for the user is:

T =
2ℓr−1

12
=

225

12
≈ 2.8× 106sec

An attacker, however, does not know the password p and must therefore search the combined space
of the password’s entropy E and the nonce’s. The total number of operations required by an attacker is,
on average:

NA = 2E+ℓr−1

6

For even the scenario with the shorter password, we have:

N↓ = 2104+26−1 = 2129 ≈ 6.8× 1038 ops

which is enough. Given that each operation is a memory-hard Argon2id computation, the total work
required is astronomically large and computationally infeasible for any known adversary, regardless of
hardware specialization (solving EDLP for the final public key is much more efficient in this case).

6 Conclusion and Future Work

The current ideal setup (utilizing a secure KDF function) for λ = 128 requires a password with 20
random characters (up to 60, taking ”usual” people’s passwords, which provide not 6.55 but 2,5-3 bits
per character). Additional randomness usage (with ℓr = 26) allows for reducing the password to 16
random characters, which is better but still quite hard for users.

The primary goal of our subsequent research is to reduce the length of the user’s secret knowledge
by utilizing data extracted from the physical world, including biometrics and objects. We believe that
replacing the password bits with bits extracted from memorized objects and combining this approach
with PoW will lead to a future where people should remember difficult secrets to have their funds
recoverable and secure.

References

[NIS01] NIST. FIPS PUB 140-2: Security Requirements for Cryptographic Modules. Tech. rep. FIPS
PUB 140-2. https://csrc.nist.gov/publications/detail/fips/140/2/final. National
Institute of Standards and Technology, 2001.

[Bit13] Bitcoin Improvement Proposals. BIP-39: Mnemonic code for generating deterministic keys.
Online. https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki. 2013.

[BDK17] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. “Argon2: The Memory-Hard Func-
tion for Password Hashing and Other Applications”. In: IACR Transactions on Symmetric
Cryptology 2017.4 (2017), pp. 43–57. doi: 10.13154/tosc.v2017.i4.43-57. url: https:
//tosc.iacr.org/index.php/ToSC/article/view/729.

[KKM19] Kevin Kelly, Neal Koblitz, and Alfred Menezes. “The Joy of Factoring and the Factoring of
Joy”. In: IACR Cryptology ePrint Archive 2019/1492 (2019). url: https://eprint.iacr.
org/2019/1492.

[Bit20] Bitcoin Core Contributors. BIP-341: Taproot: SegWit version 1 spending rules. Online. https:
//github.com/bitcoin/bips/blob/master/bip-0341.mediawiki. 2020.

[LP20] Gaëtan Leurent and Thomas Peyrin. “SHA-1 is a Shambles: First Chosen-Prefix Collision on
SHA-1 and Application to the PGP Web of Trust”. In: 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 2020, pp. 1839–1856. url: https://www.
usenix.org/conference/usenixsecurity20/presentation/leurent.

[Rar24] Rarimo. Bionetta.Ultimate Client-Side ZKML Prover. GitHub repository. https://github.
com/rarimo/bionetta. 2024.

7

https://csrc.nist.gov/publications/detail/fips/140/2/final
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://doi.org/10.13154/tosc.v2017.i4.43-57
https://tosc.iacr.org/index.php/ToSC/article/view/729
https://tosc.iacr.org/index.php/ToSC/article/view/729
https://eprint.iacr.org/2019/1492
https://eprint.iacr.org/2019/1492
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://www.usenix.org/conference/usenixsecurity20/presentation/leurent
https://www.usenix.org/conference/usenixsecurity20/presentation/leurent
https://github.com/rarimo/bionetta
https://github.com/rarimo/bionetta

	Introduction
	What Can We Break?

	Bitcoins That Can't Be Lost
	Recovery Approaches
	Recoverable P2TR Address
	Parameters
	Address Generation
	Composite Key
	KDF-based Key

	Recovery Flow
	Composite Key
	KDF-based Key

	Proposed parameters
	Composite Key
	Attack Cost
	Additional Security Considerations

	KDF-based Key

	Conclusion and Future Work

